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ABSTRACT

Predicting spatial distribution of organisms still remains a challenge of ecology. 

Small-scale variation is high in most marine benthic communities. Our long-term 

observations on soft -sediment intertidal assemblages revealed high level of small-scale 

spatial variation, and most temporal variation was also associated with this scale. As 

biotic interactions oft en drive small-scale patterns, we focused on the communities 

with multiple foundation species where they are understudied. We assessed overgrowth 

and feeding interference between co-dominating foundation species, long-term 

recruitment variation in their populations, and their eff ect on on the rest of assemblage. 

Our observations and experiments indicated that large suspension-feeders develop a 

facilitation cascade in the White Sea shallow subtidal, boosting species diversity and 

driving patch dynamics on mixed sediments.
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LIST OF FIGURES

FIGURE 1 Spatial and temporal scales of natural disturbances in soft -sediment 
habitats. Small-scale processes, including biotic interactions, happen over 
shorter time scales. Large-scale processes are slower and take longer time to 
develop. Aft er Zajac et al. (1998; Fig. 1) with kind permission from Springer 
Science and Business Media

FIGURE 2 Spatial and temporal scales of the systems are correlated. To predict spatial 
pattern correctly the study need to be conducted near the space-time 
scaling of the system. When appropriate scaling is unknown, multi-scale 
studies are a possible decision. Aft er Wiens (1989; Fig. 3)

FIGURE 3 Relative importance of factors controlling successional dynamics as pre-
dicted for disturbance at diff erent scales. Eff ects of biotic interactions are 
most prominent at small scale, life history events control processes at meso- 
to large scales, while environmental factors infl uence multiple scales. Aft er 
Zajac et al. (1998; Fig. 4) with kind permission from Springer Science and 
Business Media.
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1 INTRODUCTION

Th e distribution of living organisms varies in space and time. Understanding the forces 

that determine such variations is one of the main challenges in ecology. Spatial pattern 

results from interaction of several forces: environmental heterogeneity (Ysebaert and 

Herman 2002), physical factors (Th rush et al. 1997; Legendre et al., 1997) and biological 

processes (Hall et al. 1994; Turner et al. 1997) acting at their specifi c scale (Levin 1992).
Small-scale processes oft en scale up and their results are displayed at higher levels. 

Th is is demonstrated by cellular automata models (Wootton 2001), and supported by 
examples from marine systems (Th rush et al. 1997; Irving et al. 2004) and terrestrial 
biomes (reviewed by Wisz et al. 2012). If we look how variation is distributed among dif-
ferent scales, in general, the result depends on the system studied. However, the small-
scale variation is common, and sometimes even considered as a fundamental property 
of marine benthic assemblages with a very few exceptions (Fraschetti et al. 2005). Un-
derstanding relationships of variability at diff erent scales is important when generating 
hypotheses about structuring processes (Underwood et al. 2000).

Spatial structure can vary annually or seasonally (Caff ey 1985; Chapman 2002; 
Norén and Lindegarth 2005) or even at shorter time scales (Morrisey et al. 1992; Jarrett 
and Pechenik 1997; Lawrie and McQuaid 2001; De Biasi et al. 2003; Porri et al. 2006). 
Temporal variation may be asynchronous in diff erent patches, and spatial pattern can be 
viewed as a mosaic of patches at diff erent stages of succession (Watt 1947). Processes af-
fecting larger spatial scales are slower, and their eff ect is oft en lagged (Wiens 1989; Zajac 
et al. 1998). Biotic interactions and seasonal factors are faster and aff ect spatial pattern at 
smaller scales (Zajac et al. 1998; Fig. 1).

Quality predictions of long-term dynamics of spatial pattern can be made only by 
increasing temporal and spatial scales of observation or taking into account several tem-
poral and spatial scale simultaneously (Wiens 1989; Fig. 2). However, there are very few 
multi-scale and long-term studies that would explicitly take into account several spatial 
and temporal scales together (e.g., Caff ey 1985; Chapman 2002; Porri et al. 2006), prob-
ably due to great labour and time expenditure. As a result, very little is known about 
long-term dynamics of spatial structure at diff erent scales. Detection of scales where the 
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most variation occurs is crucial to understanding underlying mechanisms (Underwood 
and Chapman 1996) and factors aff ecting long-term dynamics.

Fig. 1. Spatial and temporal scales of natural disturbances in soft -sediment habitats. Small-scale processes, 

including biotic interactions, happen over shorter time scales. Large-scale processes are slower and take 

longer time to develop. Aft er Zajac et al. (1998; Fig. 1) with kind permission from Springer Science and 

Business Media.

Fig. 2. Spatial and temporal scales of the systems are correlated. To predict spatial pattern correctly the study 

need to be conducted near the space-time scaling of the system. When appropriate scaling is unknown, 

multi-scale studies are a possible decision. Aft er Wiens (1989; Fig. 3).
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Th e small-scale variability is most intriguing as it is common and originates from 
diff erent sources (Fraschetti et al. 2005). Small-scale variability is shaped not only by 
environmental heterogeneity or disturbance (Sousa 1984; Ysebaert and Herman 2002), 
but also by biotic interactions like facilitation (Bruno et al. 2003; Yakovis et al. 2004, 
2005), competition (Connell 1961; Menge 1976), or eff ect of consumers (Paine 1974; 
Benedetti-Cecchi et al. 2000). Local demographic processes are other important drivers 
of variability (e.g., Whitlatch et al. 1998). Outcomes of biotic interactions are sometimes 
mediated by environmental heterogeneity and physical factors (e.g., Underwood 1980; 
Benedetti-Cecchi et al. 2000). Positive and negative biotic interactions oft en co-occur in 
one system, oft en even the sign of interaction depends on age of an organism (Flores-
Martinez et al. 1994; Callaway and Walker 1997). All those processes superimpose 
producing the complex pattern of small-scale variability.

Th ere is growing theoretical (Wootton 2001) and fi eld (see Th rush et al. 1997 for 
marine and Wisz et al. 2012 for terrestrial habitats) evidence that small-scale processes 
can echo at larger scales. In benthic communities eff ects of biotic interactions are most 
prominent at small scale, probably because of relatively small size and low mobility of 
infauna. Biotic interactions are one of the keys to understanding small-scale dynamics 
as evidenced from the studies of disturbance (Fig. 3; Zajac et al. 1998) and may help to 
reveal mechanisms of changes or spatial structure development in a whole assemblage.

Fig. 3. Relative importance of factors controlling successional dynamics as predicted for disturbance at dif-

ferent scales. Eff ects of biotic interactions are most prominent at small scale, life history events control 

processes at meso- to large scales, while environmental factors infl uence multiple scales. Aft er Zajac et al. 

(1998; Fig. 4) with kind permission from Springer Science and Business Media.

Foundation species create habitat for other species and structure numerous com-
munities (Dayton 1972)  like kelp forests, coral reefs, mussel beds, intertidal canopy-
forming algae, mangroves, or terrestrial forests (Jones et al. 1997; Bruno and Bertness 
2001; Stachowicz 2001). Foundation species can provide substrate where it is lacking 
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(Hacker and Madin 1991; Ellison and Farnsworth 1992), create habitats with complex 
architectural properties (Crooks and Khim 1999), provide refuges from disturbances 
(Woodin 1978), modify local conditions that may aff ect growth, mortality, feeding or 
recruitment of other species (Stephens and Bertness 1991; Leonard 1999; Volkenborn 
and Reise 2006). Th e strength of facilitation by foundation species depends on their age 
structure or density (Woodin 1978; Callaway and Walker 1997), environmental condi-
tions (Norkko et al. 2006), and the scale of observations (Eklöf et al. 2011). Sometimes 
foundation species not only facilitate but also compete with each other and with others 
(Dayton 1975), and they may have indirect negative eff ects on some other species as well 
(Jones et al. 1997). Because of the links connecting foundation species to many others, 
demographic processes in their populations are important for the whole assemblage.

Oft en, communities are organised around several coexisting foundation species. 
Such species have been usually considered functionally similar (Bruno and Bertness 
2001). In a very few cases coexisting foundation species were explicitly addressed 
separately. For example, cordgrass Spartina alternifl ora can facilitate secondary 
foundation species—ribbed mussels Geukensia demissa—that in turn supports a diverse 
assemblage (Altieri et al. 2007). Interactions between coexisting foundation species that 
received recent attention include mostly unidirectional facilitation (Altieri et al. 2007; 
Gribben et al. 2009) or negative interactions that lead to exclusion at small scale (e.g., Van 
Wesenbeeck et al. 2007). However, potential eff ects of functionally diff erent foundation 
species coexisting at small scale were rarely addressed. 

It can be predicted that when foundation species coexist at smaller scales hierarchies 
of dependent (facilitated) species would form around each of them (Yakovis et al. 2008). 
Th e interplay of positive and negative interactions between coexisting foundation species 
would aff ect various aspects of their life like growth, mortality, diet and recruitment. 
Th is, in turn, may have consequences for long-term dynamics of the spatial pattern in 
the whole community.

Being interested in spatial pattern development, we studied the case of less structured 
soft -sediment habitats and more structured epibenthic ones on mixed sediments. We 
traced long-term dynamics of spatial structure in a soft -sediment intertidal community 
to assess relative importance of several temporal and spatial scales of variation in density 
and biomass of macrobenthic species, and to address persistence of pattern at diff erent 
scales. We also explored the role of coexisting but functionally diff erent foundation 
species in generating community structure: their eff ect on spatial distribution of 
dependent fauna, the possible interactions between foundation species resulting from 
overgrowth, and long-term recruitment variation.



2 BRIEF  DESCRIPTION OF RESULTS

Th e results of this thesis were published in six papers listed below.

1. Varfolomeeva, M. A., Naumov, A. D., 2013. Long-term temporal and spatial 
variation of macrobenthos in the intertidal soft -bottom fl ats of two small bights 
(Chupa Inlet, Kandalaksha Bay, White Sea). Hydrobiologi a 76, 175–189.

2. Yakovis, E. L., Artemieva, A. V., Shunatova, N. N., Varfolomeeva, M. A., 2008. 
Multiple foundation species shape benthic habitat islands. Oecologia 155, 785–
795.

3. Yakovis, E. L., Artemieva, A. V., Fokin, M. V., Varfolomeeva, M. A., 
Shunatova,  N. N., 2007. Eff ect of habitat architecture on mobile benthic 
macrofauna associated with patches of barnacles and ascidians. Marine Ecology 
Progress Series 348, 117–124.

4. Yakovis, E. L., Artemieva, A. V., Fokin, M. V., Varfolomeeva, M. A., 
Shunatova, N. N., 2013. Synchronous annual recruitment variation in barnacles 
and ascidians in the White Sea shallow subtidal 1999–2010. Hydrobiologia 706, 
69–79.

5. Yakovis, E. L., Artemieva, A. V., Fokin, M. V., Varfolomeeva, M. A., 2012. 
Intraspecifi c variation in stable isotope signatures indicates no small-scale 
feeding interference between a horse mussel and ascidian. Marine Ecology 
Progress Series 467, 113–120.

6. Varfolomeeva, M. A., Artemieva, A. V., Shunatova, N. N., Yakovis, E. L., 2008. 
Growth and survival of barnacles in presence of co-dominating solitary ascidians: 
growth ring analysis. Journal of Experimental Marine Biology and Ecology 363, 
42–47.

Th e processes operating at small spatial scales are important structuring forces in 
marine and terrestrial assemblages, yet their role in promoting community dynamics and 
long-term stability has not been suffi  ciently studied. Observations at several temporal 
scales are necessary to assess changes of spatial structure (Wiens 1989), however, the 
dynamics of spatial pattern is usually assessed using single time scale even in long-term 
multi-scale studies (e.g., Ysebaert and Herman 2002; Middelboe et al. 2003). Long-term 
observations (1987–2008) on density and biomass of main intertidal macrobenthic 
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species at two soft -sediment bights in Chupa Inlet (Kandalaksha Bay, the White Sea) 
revealed the importance of small-scale spatial pattern dynamics (Varfolomeeva and 
Naumov 2013). A hierarchical sampling design included two temporal (year, season 
within a year) and three spatial scales (bights—7 km, stations within a bight—10–100 m, 
and replicate samples—10s cm apart).

• Th e contribution of diff erent scales in variation of density and biomass diff ered 
between the common macrobenthic species. Most species demonstrated higher 
abundance variation at the scale of station and smaller, several species, however, 
showed higher variation between the bights. 

• Th e spatial pattern changed in time, oft en asynchronously between bights or 
stations, as evidenced by comparable magnitude of interactive and temporal 
variability for most species.

• Th e assemblages were more variable at small scales and more stable at larger scales: 
inter-annual changes were more frequent and strong between stations than bights; 
at the bight scale, seasonal variation was oft en higher than interannual one.

Small-scale spatial patterns are oft en shaped by biotic interactions. Foundation 
species generate particularly strong eff ects on dependent fauna (Dayton 1972; Bruno 
and Bertness 2001). Oft en a community develops around multiple coexisting habitat-
forming species (Jones et al. 1997; Bruno and Bertness 2001; Stachowicz 2001). However, 
the eff ects of apparently diff erent organisms are rarely assessed separately (Yakovis et al. 
2008; Angelini et al. 2011). In the shallow subtidal zone in the White Sea, barnacles 
Balanus crenatus, sometimes overgrown by solitary ascidians (mainly Styela spp. and 
Molgula spp.), are oft en found in epibenthic patches on hard substrates scattered over 
muddy sediment. Barnacles form clusters (aggregations) on bivalve shells, small stones 
and conspecifi cs, while ascidian clumps develop on barnacles and their empty shells. 
Within the clusters, barnacle shells create a complex structure rich with sediment-fi lled 
cavities. Th e assemblages of mobile macrofauna associated with epibenthic patches diff er 
in species composition and abundance from the surrounding unstructured sediment. 
459 epibenthic patches were analysed to assess the eff ect of coexisting foundation species 
on sessile fauna (Yakovis et al. 2008).

• Diff erent foundation species attracted specifi c sessile taxa. 

• Higher number of foundation species in a patch enhanced species diversity. 
Barnacles dominated on the primary substrate. Together with ascidians and red 
algae, barnacles provided habitat for most sessile species (72% of individuals).

• Th e size structures of barnacles (live individuals and empty shells) and ascidians 
were interrelated, suggesting long-term patch dynamics from barnacle to ascidian 
dominance.

• Th e small-scale spatial patterns indicated that the patches formed by multiple 
foundation species were primarily structured by facilitation of dependent taxa, 
and facilitation and competition between diff erent foundation species.



19

Foundation species aff ect dependent ones not only by their biological properties 
like biodeposition or sediment reworking (Norkko et al. 2006; Volkenborn and Reise 
2006). Some foundation species, like kelp or seagrasses, also modify habitat creating 
biogenic structures as evidenced by experiments with artifi cial imitations (Lee et al. 
2001; Norderhaug et al. 2002). We hypothesised that the clusters of barnacles Balanus 
crenatus would add to heterogeneity and complexity of otherwise almost unstructured 
sediment and tested this hypothesis in a manipulative experiment using artifi cial 
imitations of barnacle clusters exposed for 1 or 2 years (Yakovis et al. 2007a). Th e fi nal 
composition of mobile fauna in such imitations was compared to natural aggregations 
and the surrounding unstructured sediment. Barnacles from the epibenthic patches 
aff ected mobile macrofauna partly due to complex cavity-loaded structure provided by 
their shells as evidenced by a fi eld experiment. 

• Th e assemblages in natural and artifi cial epibenthic patches were much more 
similar to each other than to unmanipulated bare sediment.

• Th e bivalves Musculus discors and polychaetes Pholoe minuta dominated 
numerically both in natural epibenthic patches and artifi cial epibenthic patches, 
whereas the polychaetes Rhodine loveni and Apistobranchus tullbergi dominated 
in unmanipulated bare sediment.

Recruitment of foundation species can potentially aff ect the whole assemblage 
(Bruno and Bertness 2001). Barnacles Balanus crenatus and ascidians are foundation 
species that form multispecies patches. Th ey diff er in timing of reproduction (Mileikovsky 
1970; Khalaman 2001), duration of planktonic larval life (Herz 1933; Khalaman et al. 
2008) and occupy mostly diff erent substrates when adult (Yakovis et al. 2005, 2008; 
Yakovis 2007). We hypothesised that the recruitment pattern of these species would be 
diff erently aff ected by large-scale climatic factors and local conditions and tested this 
hypothesis using long term (1999–2010) observations (Yakovis et al. 2013). In contrast to 
our initial expectations recruitment of the both coexisting foundation species exhibiting 
alternative ecological strategies was similarly regulated by large-scale climatic factors, 
and not by local substrate availability or abundance of adults as indicated by the long-
term study of natural epibenthic patches.

• Barnacle recruits were observed mainly on the surface of shells, stones, and 
conspecifi c adults. Ascidian recruits were found mostly on adult barnacles, 
indicating facilitation by Balanus crenatus.

• Annual recruitment rates of barnacles and ascidians were correlated. Warm 
autumns were followed by the increased recruitment in both species. Cold 
winters and summers were associated with recruitment decrease.

• Mean annual recruitment rates showed 26-fold variation for barnacles and 30-
fold for ascidians.

• Recruitment of the both foundation species was not limited by hard substrate 
availability or abundance of adults.
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Interactions between coexisting foundation species are an important process that 
can drive small-scale dynamics (Van Wesenbeeck et al. 2007). Our results suggest that 
interactions between foundation species can vary in strength and sign and can depend 
on age of the organisms. 

Spatially close individuals of large suspension-feeders may compete for food. We 
studied a case that provided no evidence of feeding interference between co-dominating 
horse mussels Modiolus modiolus and ascidians Styela rustica that frequently co-occur in 
mixed and single-species clumps on hard substrates (Yakovis et al. 2012). We compared 
δ13C and δ15N stable isotope ratios within the tissue of each species in presence and 
absence of a potential competitor to avoid consequences of tissue- and species-specifi c 
isotope fractionation rates (Dalerum and Angerbjörn 2005). 

• Th e stable isotope ratios diff ered between species (Modiolus modiolus and Styela 
rustica) and sites (8.1 km apart).

• Th e two muscular tissues of M. modiolus substantially diff ered in stable isotope 
ratios: –21.582  ± 0.048  (δ13C) and 6.551  ± 0.063  (δ15N) in foot muscle versus 
–20.970 ± 0.063 (δ13C) and 7.806 ± 0.074 (δ15N) in adductor muscle.

• In either species, the stable isotope ratios did not diff er in presence and absence 
of a potential competitor. In combination with interspecifi c diff erences, this 
indicated absence of interference competition for food.

Another case we studied indicated negative consequences of overgrowth by ascidians 
on barnacles Balanus crenatus co-occuring in the epibenthic patches. We compared age-
based annual vertical growth increments and dead:live ratios of barnacles from natural 
patches dominated by ascidians or barnacles. 

• Regardless of the biomass of conspecifi c neighbours barnacles grew slower in 
ascidian- than in barnacle-dominated patches. 

• Dead:live ratios of barnacles aged 1+…2+ and 4+…9+ were higher in ascidian-
dominated patches.

• Estimated mortality risk, calculated as a ratio of remaining empty shells’ counts 
in ascidian- vs. barnacle-dominated patches, increased with age of barnacles 
from around 1:1 to 5.6 times greater in the 9+ age group.

Our results show that the ontogenetic shift  from facilitation to negative interactions 
between foundation species may create an important feedback loop for dynamics of the 
small-scale spatial pattern and may be one of the factors promoting succession. Juvenile 
ascidians occupy habitat only aft er the establishment of adult barnacles. Growing up, 
they apparently contribute to decline of the latter. We suggest that long-term coexistence 
of foundation species at large scale may originate from asynchronous dynamics at 
smaller scale of the patches.



3 DISCUSSION

3.1 Long-term dynamics of spat ial structure

In  many marine communities small-scale spatial variation of species abundance is 

common and sometimes even considered as a basic property of spatial pattern (reviewed 

by Fraschetti et al 2005). In our study, the density and biomass of most species varied 

at small spatial scale (10–100m) while several species showed large-scale heterogeneity 

(7km), but only for a few of them it was higher than small-scale one. Our results confi rm 

that small-scale spatial variability is high in soft -sediment macrobenthos (Varfolomeeva 

and Naumov 2013). At larger scales, spatial patterns may appear less variable because 

of averaging of local heterogeneity (Wiens 1989), and low large-scale spatial replication 

leading to loss of statistical power (Debinsky and Holt 2000). Th e latter explanation 

seems unlikely, because in the present survey signifi cant large-scale variability was 

detected for 8 of 18 studied species, indicating the strength of the eff ect. Lack of data 

on environmental variables at small-scale did not allow us to separate the role of 

environmental heterogeneity, physical factors, and biotic interactions in generating the 

spatial pattern. Further studies can overcome these limitations by combining results of 

several long-term surveys over a broad spatial extent with environmental measurements 

and climatic data.
Dynamics of spatial structure can be reliably studied only when several spatial and 

temporal scales are taken into account (Wiens 1989). We found evidence that small-scale 
dynamics of spatial pattern can coexist with large-scale stability: inter-annual changes 
were more frequent and strong between stations than bights; at the bight scale, seasonal 
variation was oft en higher than interannual one. Landscape ecology predicts that small-
scale processes fl ow faster than large-scale ones (Wiens 1989; Zajac et al. 1998), so it is 
possible that our study was not long enough to detect long-term temporal variation at 
the large spatial scale. We fi nd this explanation unlikely because of the known similar 
cases where instability at smaller scales produces quasi-stability at higher scales. For 
instance, long-term stability may result from asynchronous successions in a patchy 
environment, like it happens in wind-generated gaps on mussel beds (Paine and Levin 
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1981), or gaps from falling trees in forests (Watt 1947; Bormann and Likens 1979). It 
happens even when fi ne-scale patches do not have distinct borders like in mountain 
grasslands (Herben et al. 1993). Th ere, the small-scale changes seem undirectional 
and their eff ect levels off , while external large-scale processes can induce directional 
changes. Th ese examples support the concept that communities may be organised like 
metacommunities that consist of changing sub-units (local communities) populated by 
interacting organisms and linked by dispersal (Leibold et al. 2004).

At smaller spatial scales, biotic interactions and demographic processes can 
be important factors shaping spatial structure, and potentially aff ecting the whole 
assemblage (Zajac et al. 1998). Detailed study of these processes may help us to better 
understand small-scale pattern dynamics.

 3.2 Role of multiple coexisting foundation species 

in small-scale pattern generation.

Aggregations of several coexisting foundation species are potentially powerful agents 

shaping spatial patterns at small scales. Distribution of sessile organisms in the 

epibenthic patches of barnacles and ascidians indicated positive eff ect (facilitation) for 

many dependent species (Yakovis et al. 2008). Most sessile species resided on the surfaces 

of either foundation species, which supported specifi c assemblages of dependent taxa. 

Number of functionally diff erent foundation species increased associated biodiversity 

(Yakovis et al. 2008) probably because of amplifi ed habitat heterogeneity (Blanchard and 

Bourget 1999; Davies et al. 2005) and increased number of possible niches (MacArthur 

and MacArthur 1961).
At least some eff ects of barnacles as facilitators were determined by their mere 

presence, which sometimes is referred to as an autogenic habitat engineering (Jones et al. 
1994, 1997). Field experiment evidenced that epibenthic patches of barnacles attracted 
mobile fauna similar to habitat mimics (Yakovis et al. 2007a). Many foundation species 
attract the dependent fauna because of their physical structure that increases structural 
complexity or heterogeneity. Manipulations with artifi cial units mimicking natural 
biogenic structures had shown that habitat architecture is an important factor in beds 
of mussels Musculista senhousia (Crooks and Khim 1999) or Mytilus edulis (Khaitov 
et al. 2007), in forests of Laminaria hyperborea (Christie et al. 2007), or in mangroves 
(Nagelkerken et al., 2010). Th us, the eff ect of a foundation species may be at least partly 
attributed to higher structural complexity of their aggregations, and not only to their 
properties as living organisms.

Our fi ndings are consistent with widely recognised structuring role of facilitation 
(Bruno and Bertness 2001). Th e patches of barnacles and ascidians can be viewed as 
a hierarchy of facilitation cascades (Altieri et al. 2007; Angelini et al. 2011)  acting at 
small spatial scale. Principal foundation species facilitate each other: barnacles harbour 
ascidians, and both are overgrown by red algae. Each of the coexisting foundation species 
in turn provides a substrate for a specifi c assemblage.



23

Th us, we suggest that coexisting foundation species strongly (positively and/or 
negatively) interact, each facilitating a number of dependent ones. Outcomes of such 
interactions would aff ect an entire community.

3.3 R ecruitment variation of two foundation species 

with diff ering life histories

Spatial distribution of sessile benthic organisms is determined not only by post-

recruitment processes like adult mortality from predation, competition or unfavourable 

conditions, but also by the pattern of recruitment. We checked whether the factors 

governing recruitment success would be diff erent in coexisting foundation species: 

ascidians Styela spp. and barnacles Balanus crenatus (Yakovis et al. 2013). Ascidians and 

barnacles diff er not only in their functional properties as foundation species (Yakovis et al. 

2008) or taxonomic position, but also their larvae have diff erent dispersal abilities, season 

of recruitment, while adults occupy diff erent microhabitats within a community. In the 

White Sea, larvae of Balanus crenatus appear in plankton in July–August (Mileikovsky 

1970); nauplii spend there 2–3 weeks (e.g. Herz 1933); adults occupy primary substrates 

(empty shells of Serripes groenlandicus and small stones) and shells of conspecifi cs. 

Th e co-dominant ascidian Styela rustica spawns in mid-September (Khalaman 2001); 

its tadpoles live only 1–2 days until settlement (Khalaman et al. 2008); adult ascidians 

overgrow adult barnacles and their empty shells (Yakovis et al. 2005, 2008; Yakovis 2007). 

Despite all those diff erences, large-scale climatic factors determined recruitment success 

for both species. Analysis of long-term recruitment patterns (1999–2010) indicated that 

spatial distribution of both ascidian and barnacle recruits was not aff ected by available 

free space (Yakovis et al. 2013), yet, for adults competition for space remains a potentially 

important structuring process. High interannual variation of recruitment was probably 

mediated by local conditions and interactions aft er recruitment. 
Notably, close correspondence of recruitment patterns in ascidians and barnacles 

was probably due to diff erent mechanisms as a consequence of diff erent season of 
reproduction: mild autumns and colder winters can positively aff ect reproduction of 
adult barnacles and survival of juvenile ascidians. Mild autumns provide better feeding 
conditions for suspension feeders because longer ice-free periods boost phytoplankton 
growth (Arrigo et al. 2008). Cold winters can ensure better survival lowering metabolism 
levels (Honkoop and Beukema 1997) or suppress recruitment of predators (Beukema et 
al. 1998). 

Close link between recruitment regulation of the foundation species may be 
governed by large-scale processes in spite of diff erent life histories and microhabitat use. 
However, our study was carried out only at one location, and location-specifi c eff ects 
on recruitment may confound wider generalisations (Myers 1998). Further research 
including more sites is needed to separate site-specifi c eff ects on recruitment from 
climatic factors and biotic interactions.
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3.4 Int eractions between coexisting foundation species

We studied the interactions between coexisting foundation species on two diff erent 

pairs of species. We introduced a method to assess feeding interference between large 

suspension feeders comparing δ13C and δ15N stable isotope ratios in presence and absence 

of potential competitor and tested it on a case of ascidians living on horse mussels 

(Yakovis et al. 2012). We also addressed possible eff ects of overgrowth by ascidians on 

growth and risk of mortality of barnacles (Varfolomeeva et al. 2008). 

3.4.1  Feedi ng interference in horse mussels and ascidians

Feeding interference is a potentially important process for sessile suspension feeders 

(Pullen and LaBarbera 1991; Okamura 1984, 1985, 1988), however it has been rarely 

addressed directly for large organisms perhaps because of diffi  culties in using direct 

counts of consumed tagged particles.
Nitrogen and carbon stable isotope ratios are oft en used to trace the sources 

of organic matter and to assess diets of animals (reviewed by Boecklen et al. 2011). 
Th e interpretation of isotope ratios is obscured by isotope fractionation rates, which 
depend on the metabolic rate of a species or a tissue (Dalerum and Angerbjörn 2005). 
Presence and absence of potential competitor aff ects the diet of an organism (Hanson 
and Leggett 1986; Haken and Batzli 1996). We assumed if such feeding interference 
is substantially strong and long-lasting, one may detect the consequent shift  in stable 
isotope ratios. Th e comparison of δ13C and δ15N stable isotope ratios in presence and 
absence of a potential competitor can be made within the same tissue of a given species, 
helping to avoid consequences of tissue- and species-specifi c isotope fractionation 
rates. Diff erent isotope signatures in presence and absence of a potential competitor 
would evidence interspecifi c feeding interference. We tested this approach on horse 
mussels Modiolus modiolus and ascidians Styela rustica—large suspension feeders with 
potentially overlapping feeding spectra (Stuart and Klumpp 1984; Lesser et al. 1992; 
Defossez and Hawkins 1997; Armsworthy et al. 2001; Petersen 2007; Jiang et al. 2008) 
oft en found in mixed and single-species clumps on small hard substrates scattered over 
muddy bottom.

Similar δ13C and δ15N stable isotope ratios in the tissues in presence and absence 
of a potential competitor, combined with interspecifi c diff erences in isotope signatures, 
indicated no evidence of feeding interference between coexisting ascidians and horse 
mussels (Yakovis et al. 2012). 

Ascidians and horse mussels may use diff erent particle fractions. Similar mechanism 
of resource partitioning was observed in a rope culture of Mytilus edulis coexisting 
with solitary ascidians Ciona intestinalis and suspension feeding gastropods Crepidula 
fornicata (Lesser et al. 1992). Th en, the eff ect of feeding interference could be weak 
because of high food availability and no small-scale variation in its supply. In this case, 
the method’s resolution may be too low to detect a small shift  in isotopic ratios. We did 



25

mot measure food availability during collection of samples, however, we suggest that a 
subtle eff ect, even if detected, could be biologically insignifi cant.

We believe that the method of comparing stable isotope ratios in presence 
and absence of potential competitor may be a promising tool to investigate feeding 
interactions in nature. Th e method should be further tested on a case where strong eff ect 
is expected. Other methods may be used to check reliability: diatom-based gut content 
analysis of food size spectra in the animals sampled in the fi eld (like in Tamberg et al. 
2013), or in a laboratory experiment feeding with calibrated latex granules (like in Berry 
and Schleyer 1983) or natural seston and suspended particles (like in Armsworthy et al. 
2001).

We found no sign of feeding interference between ascidians growing on horse mussels, 
however, there may be other interactions between these species. Overgrowth binds the 
species with interactions of varying strength (Wahl 2008). It provides a camoufl age from 
predators (Wahl and Hay 1995) or, conversely, facilitates prey handling (Enderlein et al. 
2003); oft en epibionts on the mollusk shells reduce growth and reproduction of basibiont 
(Dittman and Robles 1991; Wahl 1996; Buschbaum and Reise 1999). Our results suggest 
that interactions between foundation species not necessarily are strong. Th e strength of 
interaction is possibly context-specifi c, being mediated by local conditions in a similar 
fashion as facilitation eff ect is mediated by properties of foundation species (Heck and 
Wetstone 1977; Woodin 1978; Callaway and Walker 1997).

3.4.2  Overgrowth  in barnacles and ascidians

Structure observed in the patches of barnacles and ascidians suggests that they are 

shaped by negative eff ects of overgrowth. In the ascidian-dominated patches barnacles 

grew slower and the proportion of their empty shells was higher than in the barnacle-

dominated patches, so the hypothesis about negative interactions between ascidians and 

barnacles could not be rejected (Varfolomeeva et al. 2008). Th e results suggest alternative 

explanations: for instance, ascidians may fl ourish in the patches where barnacles decline 

because of other processes. Although casual relationships should be further established 

experimentally, following observations favour the retained hypothesis about negative 

interactions.
At the sites we studied adult ascidians reside mainly on barnacles (Yakovis et al. 

2008), juveniles were also found on conspecifi cs (Yakovis et al. 2013). 10% of barnacles 
with orifi ce larger than 3 mm have an ascidian on their opercular plates, 21% of ascidians 
were found inside the orifi ce (Yakovis et al. 2008), and oft en they completely blocked it. 
We commonly observed ascidians growing on opercular plates of empty shells of dead 
barnacles. When the multi-tier ascidian clump builds up the overall eff ect can likely 
become unbearable for overgrown barnacles. Apart from complete blocking, negative 
eff ect on feeding can arise from other causes: ascidians harboured red algae and together 
they could screen barnacles from currents (Barnes 1955; Leonard 2000).

Diff erent traits of foundation species oft en mediate their eff ects. It was shown for 
size, age, and density of plants (Callaway and Walker 1997) or tube-building polychaetes 
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(Woodin 1978), architectural complexity in seagrass beds (Heck and Wetstone 1977). 
Overgrowth by ascidians can alter growth and mortality of barnacles and thus may aff ect 
the dependent species.

Field observations suggest that the studied epibenthic patches shift  from barnacle 
to ascidian dominance (Yakovis et al. 2005). Th e earlier stages of succession were 
experimentally reproduced on initially bare Serripes groenlandicus shells exposed for 
several years (Yakovis et al. 2005; Yakovis et al. 2007b). On initial stages of succession 
barnacles probably facilitate ascidians, as indicated by microhabitat distribution of adult 
ascidians in natural and experimentally reproduced epibenthic patches (Yakovis et al. 
2007b; Yakovis et al. 2008). Later, as ascidians grow, the sign of interaction may change, 
as evidenced by our results.

Th e general theory about relative importance of various interactions along 
environmental stress gradients predicts that in the habitats with low stress, like subtidal 
zone, importance of competition would be low, relative to predation and protection from 
other negative factors provided by association with foundation species (associational 
defences; Bruno and Bertness 2001). However, this theory does not account for 
ontogenetic shift s of the sign of interactions. Successions where one species facilitates 
juveniles and then competes with adults are common (Flores-Martinez et al. 1994; 
Callaway and Walker 1997). Recently, demography was recognised as an important 
modifi er of the interactions between foundation species along with environmental 
stress (Angelini et al. 2011). Our results suggest that the ontogenetic  shift  of the sign of 
interactions between foundation species may create an important feedback loop for the 
system’s dynamics and may be one of the factors promoting succession at small-scales. 
Further research is needed to compare relative importance of associational defences, 
predation and competition for foundation species at diff erent life stages.

Local communities in individual patches of barnacles and ascidians together make 
up a meta-community at larger spatial scale (Leibold et al. 2004). New unoccupied 
substrates like stones and empty bivalve shells are always present in the habitat and 
regularly colonised, thus, all the successional stages of the local communities regularly 
emerge in the system (Yakovis et al. 2013). We suggest, that long-term coexistence 
of foundation species at the metacommunity scale is maintained by asynchronous 
dynamics at smaller scale of the local communities like it happens in other cases (Watt 
1947; Bormann and Likens, 1979; Paine and Levin, 1981; Herben et al. 1993).

Conclusion

I n the soft -sediment assemblages studied, the highest spatial variation for most species 

was at small scale, which also was associated with most temporal changes.
As biotic interactions commonly shape small-scale spatial patterns, we focused on 

the communities assembled around foundation species, where biotic interactions are 
particularly strong.
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Th e case of co-dominating barnacles and ascidians indicated that multiple coexisting 
foundation species boosted biodiversity, each providing habitat for specifi c dependent 
taxa. Some of their eff ects were related not to their biogenic properties but to increased 
habitat complexity.

Although foundation species studied had diff erent life histories, their recruitment 
was similarly controlled by large-scale climatic processes.

Coexisting foundation species studied are engaged in interactions of varying 
strength and sign with each other. Since they create multiple superimposed facilitation 
cascades for dependent fauna, these interactions shape the entire community.
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